Evapotranspiration

What is Evapotranspiration?

The sum of evaporation from the land surface plus transpiration from plants

Source: USGS

NASA

Overview

- Importance of ET
- Challenges of Measuring ET
- Benefits and opportunities of using remote sensing for ET
- Methods of deriving ET using remote sensing:
- Summary

Importance of ET

- Critical component of water and energy balance of climate-soil-vegetation interactions.
- Used for
 - Determining agricultural water consumption
 - Assessing drought conditions
 - Develop water budgets
 - Monitor aquifer depletion
 - □ Etc....

Challenges of Measuring ET

- ET is complex (many variables)
- ET varies across time and space (A LOT!)

Main Limitation of ET Ground Measurements

They are point measurements and cannot capture spatial variability

Lysimeters

Source: Rick Allen, University of Idaho

Benefits of Using Remotely Sensed Satellite Data

- Provides relatively frequent and spatially continuous measurement of biophysical variables at different spatial scales:
 - Radiation
 - Vegetation coverage and density

Source: David Toll, NASA Goddard Space Flight Center

Methods for Deriving ET

Method	Spatial Resolution	Source	Availability
Land Surface Models: NLDAS/ GLDAS	1 - 1/8 degree (Global)	NASA/NOAA	Free/download
Other Physical Models: MODIS	1km (Global)	University of Montana	Free/download
Energy Balance: METRIC/SEBAL	30 m (Local, Regional)	Various	Not Free/contract
Vegetation/ET Relationships	30 m (Local, Regional)	Various	Free/Not Free
ALEXI	10 km – 30 m	USDA	Free/download

MODIS (Moderate Resolution Imaging Spectroradiometer)

- Spatial Resolution
 - □ 250m, 500m, 1km
- Temporal Resolution
 - Daily, 8-day, 16-day, monthly, quarterly, yearly
 - 2000-present
- Data Format
 - Hierarchal data format Earth Observing System Format (HDF-EOS)

Spectral Coverage

- 36 bands (major bands include Red, Blue, IR, NIR, MIR)
 - Bands 1-2: 250m
 - Bands 3-7: 500m
 - Bands 8-36: 1000m

MODIS Global ET Products

Numerical Terradynamic Simulation Group (NTSG), University of **Montana**

Input MODIS data (RS) (Albedo, FPAR/LAI, Land cover) (S↓, VPD, Temperature. No Prcp!)

Daily Meteorological data (MET)

$$\lambda E = \frac{\Delta \cdot R_a \cdot (R_n - G) + \rho \cdot C_p \cdot VPD}{R_a \cdot (\gamma + \Delta) + \gamma \cdot R_S}$$

MODIS ET: soil evaporation, evaporation from intercepted water by canopy and plant transpiration.

Penman-Monteith equation ET = f(RS, MET)

Characteristics of MODIS ET Products

- Spatial Resolution 1 km
- Spatial Coverage: Global
- Time frame: 8-day, monthly, annual
- Time period: 2000-2014
- Data download:

http://www.ntsg.umt.edu/project/mod16

MOD16 Global Terrestrial ET Data Set

Source: Qiaozhen Mu, University of Montana

USGS WaterSMART ET

http://www.usgs.gov/climate_landuse/lcs/projects/wsmartet.asp

Annual total ET (median of 2001-2013) derived from the 1km MODIS-based thermal dataset. The product is produced from 8-day accumulation of ET from January to December.

Monthly and yearly summaries are available at the USGS Geoportal http://cida.usgs.gov/gdp/

Methods for Deriving ET: Landsat

Energy Balance And Vegetation Indices

Why Landsat?

- Landsat allows field-level ET
- Landsat has a thermal band which is important for some ET approaches

Source: Richard Allen, University of Idaho

Characteristics of Landsat: Spectral

- Landsat instruments measure primarily light that is reflected from Earth's surface (with one exception)
- Landsat instruments are designed to detect visible and infrared (near and mid) wavelengths.

Landsat bands of ETM+ (Landsat 7)

Source: NASA Goddard Space Flight Center

Landsat Bands: What is Important for ET?

Evolution of Energy Balance Approach

SEBAL -

- Surface-Energy Balance Algorithm for Land
- Developed by Dr. Wim Bastiaanssen (Netherlands) in late 1990s
- Applications: ET and crop productivity

METRIC

- Mapping Evapotranspiration with High Resolution and Internalized Calibration
- Developed by Dr. Rick Allen, University of Idaho in the mid-2000s

Agricultural evapotranspiration for southern Idaho. Image courtesy of IDWR.

How METRIC Works

Requires satellites with Red, Near IR and Thermal IR

Rn: Landsat reflectances and surface temperature

G estimated from Rn, surface temp. and vegetation indices

H estimated from surface temp. ranges, surface roughness, and wind speed

(G -heat to ground)

Evaporation

consumes

Energy

Source: Rick Allen, University of Idaho

ET from METRIC

This is an image of agricultural fields in Idaho from the Landsat thermal band. Irrigated fields are cooler (blue), while surrounding areas are warmer (yellow and red)

This image is a map of evapotranspiration created using METRIC. Areas with higher ET are shown in darker green

Credit: NASA/Goddard Scientific Visualization Studio

ET By Land Use Class

How Does Water Use Change as Land Use Changes?

Land Use / Land Cover

ET From METRIC

ET By Land Use / Land Cover

Source: Anthony Morse, Idaho Department of Water Resources

'full' METRICtm-ERDAS submodel for sensible heat and ETrF

Source: Rick Allen, University of Idaho

What is a Vegetation Index?

- Based on the relationship between red and near-infrared wavelengths.
 - Chlorophyll strongly absorbs visible (red)
 - Plant structure strongly reflects nearinfrared

What is NDVI?

- Normalized Difference Vegetation Index
- NDVI formula:
 Near-Infrared Red
 Near-Infrared + Red
- Values range from -1.0 to 1.0
 - Negative values to 0 mean no green leaves
 - Values close to 1 indicates the highest possible density of green leaves.

Image Credit: Robert Simmon

Examples of NDVI

Near Infrared – Red Near Infrared + Red

North America, July 2000

Values represent varying levels of vegetation density

Africa, March 2000

Source: NASA Goddard Scientific Visualization Studio

Other terms you need to know....

Crop Evapotranspiration (ETc)

- ETc = the combined processes of crop transpiration (T) and evaporation from the soil surface (E) for a well-watered (non-stressed) crop
- □ ETo = reference ET (measure on the ground). Typically a Source: California Department of Water Resources well-watered grass surface.

Crop Coefficient (Kc)

 Vary by type of crop, stage of growth of the crop, and some cultural practices.

Source: University of Nebraska-Lincoln Extension

Calculating ETc

- Apply crop coefficient (Kc) to reference ET (ETo): Etc = Eto * Kc
- In California, the California Irrigation Management Information System (CIMIS) provides daily ETo values, gridded across the entire state at 2km resolution.

Daily Eto values from CIMIS

Crop Coefficients (Kc) vs. Vegetation Indices

Kc is related to light interception (ground cover)

There is a direct relationship between Kc and NDVI

Source: Tom Trout, USDA

TOPS Satellite Irrigation Management Support

http://ecocast.arc.nasa.gov/dgw/sims/

Advantages/Disadvantages for ET Derived from Vegetation Indices

- Primarily useful for estimating ET of a wellwatered crop on a dry soil surface
- This method is simple and quick, and inexpensive.
- Can be used on other types of imagery not just Landsat

Summary

- ET is not directly measured from satellites.
- Deriving ET is a complex process (some methods are more complex than others).
- There are multiple ET products available that utilize different approaches and remote sensing instruments at different temporal and spatial resolutions.
- Any of the ET data derived from Landsat require special processing capabilities

Thank You!